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Magnetostriction Transition
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We present a non mean-field model which undergoes a magnetostriction phase
transition in the temperature. That is, the crystal becomes sharply contracted
and magnetized once the temperature passes below the critical value.
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1. MODEL AND MAIN THEOREM 1

Magnetostriction is know in physics as a phenomenon of a drastic change
of geometric shape of crystals, which is accompanied by magnetic transi-
tion, see, e.g., refs. 1 and 2. Usually it is a first order phase transition with
a jump of spontaneous magnetization together with the jump in geometry
of the crystal elementary cells. Physical origin of this phenomenon is
related to so-called magnetoelastic coupling, i.e., to the interaction between
spin and displacement degrees of freedom in magnetic crystals. (1) Various
mean-field theories of this phenomenon were discussed in literature since a
long time. See, e.g., ref. 3 and references therein, for crystals, and ref. 4 for
magnetosriction in ferrofluids. (The solvable model with a short-range
interaction, discussed in ref. 2, does not exhibit the jump specific for mag-
netostriction, because it is one-dimensional.)

In the present paper we propose a simple—and a first non mean-
field!—model of this phenomenon. We prove that our model undergoes the
phase transition, when the crystal becomes sharply contracted and magne-
tized, once the temperature passes below the critical value, provided the
dimension is at least two.



We consider the following model: at each site s of Zd we have an Ising
spin ss, while at each bond l=OstP of the lattice we have positive real
variable rst, playing the role of the spatial distance between two sites.

Initially we were interested in the Hamiltonian

H̃L(sL, rLb)=− C
OstP ¥ Lb

J(rst) ssst+m C
OstP ¥ Lb

(rst − R)2 − h C
s ¥ L

ss.

Here the function J( · ) \ 0 describes the dependence of the strength of the
interaction between the spins ss and st on their spatial separation. The
parameter R is the ground-state distance between sites in the absence of the
spin interaction; h is the external magnetic field. We were assuming that J
is small on large distances and large on small distances. Our hope was to
show that in the symmetric case—h=0—the model would undergo the
striction transition as the temperature goes down. But we were unable to
show that, and, moreover, our computations suggest that such first order
transition does not take place for the Hamiltonian H̃.

To realize our program we have to modify our Hamiltonian, adding
another ‘‘geometric’’ term to the interaction. Namely, we will consider the
model, defined by the following Hamiltonian:

HL(sL, rLb)=− C
OstP ¥ Lb

J(rst) ssst+m C
OstP ¥ Lb

(rst − R)2

+l C
OstP, OsŒtP ¥ Lb : |s − sŒ|=`2

(rst − rsŒt)2 − h C
s ¥ L

ss. (1)

Here in addition to the parameter m > 0, which is enforcing the lattice
structure with the spacing to be close to R, we add another parameter
l > 0, which has the effect of making the r-lattice more regular. In particu-
lar, this term makes the ‘‘triangle inequality violation’’ energetically unfa-
vourable. By the ‘‘triangle inequality violation’’ we mean, for example, the
situation when among the four bonds rst, rsŒt, rsŒtŒ, rstŒ, forming a plaquette of
the lattice, there are three relatively small values and one relatively big.

To ensure that the above model undergoes the striction transition we
have to suppose that the interaction J is weak enough on large distances r,
and is strong enough on small distances. Otherwise this function can be
fairly general. We will describe now one specific choice of the class of
interactions J, for which the transition takes place; other choices are also
possible.

We are supposing that above some value of r, where 0 < r < R, the
interaction is weak:

J(r) [ u for r \ r,
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with u small. We further suppose that the interaction is bounded:

max
r > 0

J(r)=Ū < .,

and that within the region r [ r it is sufficiently strong: for some K …

[0, r] and for all r ¥ K

J(r) \ U,

with U large, while Ū
U=1+x with x small and meas{K} \ r/2. As we show

below (see (14)), the choice of the parameters R, r, U, u, and x is possible,
which guarantees the striction transition to happen.

The Hamiltonian (1) has the Reflection Positivity (RP) property with
respect to reflections in the shifted coordinate planes:

Li; k={x ¥ Rd : xi=k}, i=1,..., d,

with integer k; it is also RP with respect to reflections in the diagonal
planes

Li, j; k={x ¥ Rd : xi − xj=k}, i, j=1,..., d, i ] j,

again for k integer. To simplify the computations we will use the latter;
this, however, is applicable only in 2D case. The general case can also be
treated, using the RP in coordinate planes, along the same lines.

To formulate our results, we introduce the indicators of some events:
for a bond l=st we define

P <
l (r, s)=˛1 if rl=st [ r,

0 otherwise,

where r > 0 is a parameter to be chosen later. Similarly, we define the
indicator

P >
l (r, s)=˛1 if rl=st \ r+e,

0 otherwise,

where e > 0 is another parameter to be chosen.
We call a Gibbs state O ·Pb, corresponding to the Hamiltonian (1) and

inverse temperature b, a contracted state, iff for every l

OP <
l Pb \ 3

4 .
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Likewise, we call a Gibbs state O ·Pb an expanded state, iff for every l

OP >
l Pb \ 3

4 .

Theorem 1. Let h=0. It is possible to choose the parameters of the
Hamiltonian (1) in such a way, that the following holds :

• at all temperatures low enough there exists a contracted Gibbs state;

• at all temperatures high enough there exists an expanded Gibbs
state;

• for some critical temperature bc there exist at least two different
Gibbs states, O ·Pcn

bc
and O ·Pex

bc
; the state O ·Pcn

bc
is contracted, while the state

O ·Pex
bc

is expanded;

• if there exists a contracted state at the temperature b−1, then in fact
there are at least two such states, O ·P+

b and O ·P−
b . They are oppositely

magnetized: for every s, t

OssP
+
b =−OstP

−
b \ 3

4 .

Our result makes the following conjectures very plausible:

• above the critical temperature Tc every Gibbs state of our Hamiltonian
is expanded, having zero magnetization,

• below Tc every Gibbs state is contracted, while every pure state has
non-zero magnetization,

• at T=Tc precisely three pure states coexist: one is expanded, with
zero magnetization, while the other two are contracted and oppositely
magnetized.

2. BASIC ESTIMATES AND PROOF OF THE MAIN RESULT

Our strategy of the proof is to follow the RP theory of the first-order
phase transitions. To this end we introduce the following indicators:

P <
l –of the event {rl=st [ r},

P0
l –of the event {r < rl=st < r+e},

P >
l –of the event {rl=st \ r+e},

so P <
l +P0

l +P >
l =1. We also introduce the indicators P <

L , P0
L, and P >

L ,
which are products of the above over all bonds, i.e., P <

L =<l ¥ Lb
P <

l , etc.
We put P0 >

L =<l ¥ Lb
(P0

l +P >
l ).

566 Shlosman and Zagrebnov



The strategy consists in showing that for the finite volume states O ·Pb

with periodic boundary conditions at inverse temperature b, uniformly in
volume:

• the expectation OP >
l Pb is small at low temperatures,

• the expectation OP <
l Pb is small at high temperatures,

• the expectation OP <
l P >

lŒ Pb is small at all temperatures and for all
pairs of bonds l ] l −,

• the expectation OP0
l Pb is small at all temperatures.

The rest then is standard, see refs. 5 or 6.

(1) First we show that the expectation OP >
l Pb is small at low tem-

peratures.

OP >
l Pb [ OP >

L P
1/2 |L|
b [ 3OP >

L Pb

OP <
L Pb

41/2 |L|

.

We have :

OP >
L Pb=

1
ZL(b)

C
s

L

F D
l ¥ Lb

drl I{rl \ r+e}(rl) e−bHL(s
L, rLb)

[
1

ZL(b)
C
s

L

D
l ¥ Lb

F
.

r+e

drl e−bm(rl − R)2+bu [
1

ZL(b)
2 |L| 1= p

bm
22 |L|

e2 |L| bu.

Here and in the following we use the identity: >+.

−. e−Ax2
dx=`

p
A . On the

other hand

OP <
L Pb=

1
ZL(b)

C
s

L

F D
l ¥ Lb

drl I{rl [ r}(rl) e−bHL(s
L, rLb)

\
1

ZL(b)
e2bU |L| D

l ¥ Lb

F
K

drl e−bmR2
e−2blr

2

=
1

ZL(b)
1r

2
eb(U − mR2 − 2lr

2)22 |L|

. (2)

Therefore,

OP >
l Pb [

2 `2p e−b(U − u − mR2 − 2lr
2)

r `bm
, (3)
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which is small for b large once

U − u > mR2+2lr2. (4)

(2) Next we show that the expectation OP <
l Pb is small at high

temperatures:

OP <
l Pb [ OP <

L P
1/2 |L|
b [ 3 OP <

L Pb

OP0 >
L Pb

41/2 |L|

.

We have:

OP <
L Pb=

1
ZL(b)

C
s

L

F D
l ¥ Lb

drl I{rl [ r}(rl) e−bHL(s
L, rLb)

[
1

ZL(b)
(`2 reb(Ū − m(r − R)2))2 |L|.

For the lower bound we have

OP0 >
L Pb=

1
ZL(b)

C
s

L

F D
l ¥ Lb

drl I{rl \ r}(rl) e−bHL(s
L, rLb)

\
1

ZL(b)
2 |L| F D

l ¥ Lb

drl I{rl \ r}(rl) e−b(u+m(rl − R)2+l ; lŒ: l nn lŒ(rl − rlŒ)
2)

\
1

ZL(b)
2 |L| D

l ¥ Lb

F
.

−(R − r)
drl e−b(m+8l) r2

l − bu

\
1

ZL(b)
1= p

2b(m+8l)
e−bu22 |L|

, (5)

where we use in the third line the inequality (x − y)2 [ 2x2+2y2, and also
the fact that for every l the sum ;lŒ: l nn lŒ (rl − rlŒ)2 has 4 terms. Therefore

OP <
l Pb [ 2 =b(m+8l)

p
reb(Ū+u − m(r − R)2), (6)

which is small for small b.

(3) In order to show that the expectation OP <
l P >

lŒ Pb is small for all
pairs of bonds l ] l −, it is sufficient to estimate it only for pairs l=OstP,
l −=Os −tP, |s − s −|=`2 , see ref. 5. We have:

OP <
l P >

lŒ Pb [ OP Z
L P

1/|L|
b ,
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where the indicator P Z
L corresponds to the following event: on half of the

bonds—L \
b —of Lb—namely, on those which have one endpoint on the

sublattice, generated by the vectors (1, 1) and (2, −2)—the event r · \ r+e

happens, while on the remaining ones—L [
b =Lb 0 L \

b —the event r · [ r

happens. Therefore

OP Z
L Pb=

1
ZL(b)

C
s

L

F e−bHL(s
L, rLb) D

l ¥ L
\
b

D
lŒ ¥ L

[
b

drl I{rl \ r+e}(rl) drlŒ I{rlŒ [ r}(rlŒ)

[
1

ZL(b)
2 |L|eb(Ū+u − m(r − R)2 − le

2) |L|r |L| 1F
.

r+e

dr e−bm(r − R)22 |L|

[
1

ZL(b)
12 = p

bm
reb(Ū+u − m(r − R)2 − le

2)2 |L|

.

To estimate the partition function from below we note that P <
L ( · )+

P0 >
L ( · ) [ 1, so

ZL(b) \ ZL(b)(OP <
L Pb+OP0 >

L Pb). (7)

Using (2), (5), we thus have

OP Z
L Pb [

12 = p

bm
reb(Ū+u − m(r − R)2 − le

2)2 |L|

1r

2
eb(U − mR2 − 2lr

2)22 |L|

+1= p

2b(m+8l)
e−bu22 |L|

. (8)

By suppressing one of the terms in the denominator of (8) we get the
following two estimates:

OP <
l P >

lŒ Pb [
8
r
= p

bm
eb(Ū+u − 2U − m(r − R)2+2mR2 − le

2+4lr
2), (9)

which is good for b large, and

OP <
l P >

lŒ Pb [ 4 = b

pm
r(m+8l) eb(Ū+3u − m(r − R)2 − le

2), (10)

which is good for b small. So we have to look for some intermediate value
of bg, such that for b \ bg the rhs of (9) is small, while for b [ bg the rhs
of (10) is small. Of course, such value of the inverse temperature should
be the one which makes the two terms in the denominator of (8)
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equal; in other words, the reasonable choice of the value bg is to take it to
be the solution of the equation

r

2
eb(U − mR2 − 2lr

2)== p

2b(m+8l)
e−bu. (11)

But any choice of bg would be as good as this one, provided only that the
estimates (9) and (10) will turn into bounds small enough.

(4) The last estimate we need is that for the expectation OP0
l Pb. We

have

OP0
l Pb [ OP0

LP
1/2 |L|
b .

Now

OP0
LPb=

1
ZL(b)

C
s

L

F D
l ¥ Lb

drl I{r < rl < r+e}(rl) e−bHL(s
L, rLb)

[
1

ZL(b)
2 |L| 1F

r+e

r

dr e−b[m(r+e − R)2 − u]22 |L|

[
1

ZL(b)
(`2 ee−b[m(r+e − R)2 − u])2 |L|.

Combining with the estimate (7) we find:

OP0
LPb [

(`2 ee−b[m(r+e − R)2 − u])2 |L|

1r

2
eb(U − mR2 − 2lr

2)22|L|

+1= p

2b(m+8l)
e−bu22 |L|

. (12)

Here we can proceed as in the previous case, turning (12) into two different
estimates, depending on the value of b. However, the case of the observable
P0

l is easier, and it is sufficient to keep just one summand in the denomina-
tor of (12) in order to get a reasonable estimate on it. Namely, we keep the
second one, arriving to

OP0
l Pb [ 2 =b(m+8l)

p
ee−b[m(r+e − R)2 − 2u]. (13)

We now shall show that if we make for the Hamiltonian (1) the
following choice of the interaction parameters :

l=m=1, U=2R2, Ū=(2+d2) R2, u=d, r=R−1, e=2dR, (14)
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with R big enough and d small enough, then all the expectations needed are
small in the corresponding parts of the interval [b+, b− ], provided
b+=b+(R, d) is small enough, and b− =b− (R, d) is large enough.

Since the estimate (4) is satisfied under our choice (14), the relation (3)
holds for all b large enough. As we said before, the rhs of (6) is small for
all b small enough. Therefore it is enough to check that the rhs of (8) and
(12) are small uniformly in all b.

To proceed with the estimate of the correlation function OP <
l P >

lŒ Pb, as
indicated above, we have to choose a value of the intermediate inverse
temperature bg. Our choice is

bg=2 R−2 ln R. (15)

One can check that thus defined bg is indeed an approximate solution to
(11) as R Q ., though this is not important.

In the region b \ bg we will use the estimate (9), which under the
choice (14) becomes

OP <
l P >

lŒ Pb [ 8R = p

bg eb
g((2+d

2) R2+d − 4R2 − (R − R − 1)2+2R2 − 4d
2R2+4R − 2)

[ 8R = p

bg eb
g( − (1+2d

2) R2)

[ 8R2 = p

2 ln R
R−2 (1+2d

2)

[ R−4d
2

for R large.
In the region b [ bg we shall use the estimate (10), which similarly

becomes

OP <
l P >

lŒ Pb [ 36 `bp−1 R−1eb((2+d
2) R2+3d − (R − R − 1)2 − 4d

2R2)

[ 36 `bp−1 R−1eb(1 − 2d
2) R2

[ 36 `bgp−1 R−1eb
g(1 − 2d

2) R2

[ 36 `2p−1 ln R R−4d
2

[ R−3d
2

for R large.
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Finally we consider the bound (13), which becomes

OP0
l Pb [ 12 =b

p
dRe−b[(R − 1+2dR − R)2 − 2d]

[ 12 =b

p
dRe−b(1 − 3d)2 R2

.

Note that the function `x e−ax has its maximum at x= 1
2a , which equals to

`
1

2ea . Applying this to the last expression with x=bR2, we get

OP0
l Pb [ 6 `2

d

1 − 3d
= 1

pe
,

which is small for small d at any b.

3. MAGNETIZATION

Here we will prove the last statement of our theorem: the occurrence
of spontaneous magnetization in the contracted states. To do this we split
the event {rl=st [ r} into four events, and we introduce the corresponding
four indicators

P < ± ±
l –of the event {rl=st [ r, ss= ± , st= ± }.

We will show now that for all b the expectations OP < + −
l Pb=

OP < − +
l Pb are small, uniformly in the volume. Together with the obvious

statements that

OP < ++
l Pb=OP < − −

l Pb

and

OP < ++
l Pb+OP < − −

l Pb+OP < + −
l Pb+OP < − +

l Pb=OP <
l Pb,

that implies our claim, due to the first part of our theorem and by sub-
sequent application of the Theorem 4.1 of ref. 5.

We have

OP < − +
l Pb [ OP < − +

L P1/2 |L|
b ,
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where P < − +
L the indicator of the event that for every bond l − we have

rlŒ [ r, while

ss=˛+1 if |s1 |+|s2 | is even,
− 1 otherwise.

We denote this spin arrangement by sL
± . So

OP < − +
L Pb=

1
ZL(b)

F e−bHL(s
L
± , rLb) D

l ¥ Lb

drl I{rl [ r}(rl)

[
1

ZL(b)
(re−bm(r − R)2

)2 |L|.

As in (8)–(10), we have two estimates:

OP < − +
l Pb [

re−bm(r − R)2

r

2
eb(U − mR2 − 2lr

2)

=2e−b[U+m(r − R)2 − mR2 − 2lr
2] (16)

and

OP < − +
l Pb [

re−bm(r − R)2

= p

2b(m+8l)
e−bu

=r =2b(m+8l)
p

e−b[m(r − R)2 − u]. (17)

In fact, with our choice (14) of the parameters the second one is effective
for all b. We have

OP < − +
l Pb [ 3R−1 =2b

p
e−b[(R − R − 1)2 − d].

The rhs has its maximum at b= 1
2[(R − R − 1)2 − d]

, so

OP < − +
l Pb [ 3R−1 = 1

pe[(R − R−1)2 − d]
,

which is small for R large enough. L

Magnetostriction Transition 573



REFERENCES

1. C. Kittel, Introduction to Solid State Physics, 5th Ed. (Wiley, New York, 1997).
2. D. C. Mattis, The Theory of Magnetism (Harper & Row, New York, 1972).
3. V. A. Zagrebnov and V. K. Fedyanin, Spin-phonon interaction in the ising model, Theor.

Math. Phys. 10:127–142 (1972).
4. H.-O. Georgii and V. A. Zagrebnov, On the interplay of magnetic and molecular forces in

curie-weiss ferrofluid model, J. Stat. Phys. 93:79–107 (1998).
5. S. B. Shlosman, The method of reflection positivity in the mathematical theory of first-

order phase transitions, Russian Math. Surveys 41:83–134 (1986).
6. R. Kotecky and S. B. Shlosman, First-order phase transitions in large entropy lattice

models, Commun. Math. Phys. 83:493–515 (1982).

574 Shlosman and Zagrebnov


	MODEL AND MAIN THEOREM 1
	BASIC ESTIMATES AND PROOF OF THE MAIN RESULT
	MAGNETIZATION

